Evidence that translation reinitiation abrogates nonsense-mediated mRNA decay in mammalian cells.

نویسندگان

  • J Zhang
  • L E Maquat
چکیده

Nonsense codons upstream of and including position 192 of the human gene for triosephosphate isomerase (TPI) have been found to reduce the abundance of TPI mRNA to approximately 25% of normal. The reduction is due to the decay of newly synthesized TPI mRNA that co-purifies with nuclei. TPI mRNA that co-purifies with cytoplasm is immune to nonsense-mediated decay. Until now, a nonsense codon at position 23 has been the 5'-most nonsense codon that has been analyzed. Here, we provide evidence that a nonsense codon at position 1, 2 or 10 reduces the abundance of nucleus-associated TPI mRNA to an average of only 84% of normal because translation reinitiates at the methionine codon at position 14. First, converting codon 14 to one for valine increased the effectiveness with which an upstream nonsense codon reduces mRNA abundance. Second, when TPI gene sequences, including codon 14, were fused upstream of and in-frame to the translational reading frame of an Escherichia coli chloramphenicol acetyl transferase (CAT) gene that lacked an initiation codon, a nonsense codon at TPI position 1 or 2 allowed for the production of TPI-CAT that was an estimated 14 amino acids smaller than TPI-CAT produced by a nonsense-free gene, whereas a nonsense codon at TPI position 23 precluded the production of TPI-CAT. These and related findings lend credence to the concept that the nonsense-mediated reduction in the half-life of nucleus-associated TPI mRNA involves cytoplasmic ribosomes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonsense-mediated mRNA decay among coagulation factor genes

Objective(s): Haemostasis prevents blood loss following vascular injury. It depends on the unique concert of events involving platelets and specific blood proteins, known as coagulation factors. The clotting system requires precise regulation and coordinated reactions to maintain the integrity of the vasculature. Clotting insufficiency mostly occurs due to genetically inherited coagulation fact...

متن کامل

No Nonsense: The Protection of Wild-Type mRNAs From Nonsense-Mediated mRNA Decay in <i>Saccharomyces cerevisiae</i>

Nonsense-mediated mRNA decay is a translation-dependent surveillancemechanism responsible for rapidly degrading mRNAs with premature termination codons(PTCs). However, there is a significant portion of mRNAs that do not contain a PTC butare substrates for the NMD pathway. The underlying mechanisms of how the cellularmachinery determines whether or not to degrade an mRNA via the ...

متن کامل

Nonsense-mediated mRNA decay in mammals.

Nonsense-mediated mRNA decay (NMD) in mammalian cells generally degrades mRNAs that terminate translation more than 50-55 nucleotides upstream of a splicing-generated exonexon junction (reviewed in Maquat, 2004a; Nagy and Maquat, 1998). Notably, dependence on exon-exon junctions distinguishes NMD in mammalian cells from NMD in all other organisms that have been examined, including Saccharomyces...

متن کامل

Upf1 Phosphorylation Triggers Translational Repression during Nonsense-Mediated mRNA Decay

In mammalian cells, nonsense-mediated mRNA decay (NMD) generally requires that translation terminates sufficiently upstream of a post-splicing exon junction complex (EJC) during a pioneer round of translation. The subsequent binding of Upf1 to the EJC triggers Upf1 phosphorylation. We provide evidence that phospho-Upf1 functions after nonsense codon recognition during steps that involve the tra...

متن کامل

Noncoding RNA of U87 host gene is associated with ribosomes and is relatively resistant to nonsense-mediated decay.

Non-coding RNAs are involved in many cellular processes. In particular, most of C/D box small nucleolar RNAs (snoRNAs) function as guide RNAs in site-specific 2'-O-methylation of rRNAs. While most snoRNA genes reside in introns of protein-coding genes, here we demonstrated an unusual snoRNA gene occupying an intron of a previously unknown non-protein-coding gene U87HG. We characterized this hos...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The EMBO journal

دوره 16 4  شماره 

صفحات  -

تاریخ انتشار 1997